Chloro-1,2-bis(diphenylphosphino)ethanecarbonylrhodium(1): an Exceptional Complex within a Series

By Alan R. Sanger

(Alberta Research Council, 11315-87 Avenue, Edmonton, Alberta, Canada T6G 2C2)

Summary The ³¹P n.m.r. and i.r. spectra of the series of complexes $[{RhCl(CO)(Ph_2P[CH_2]_nPPh_2)}_m]$ (n = 1-4) have been studied; all the square-planar complexes are dimeric (m = 2) with a *trans* configuration about rhodium, except the complex (n = 2) which is monomeric and has a *cis* configuration.

THE spectroscopic properties of complexes of the series $[{RhCl(CO)(Ph_2P[CH_2]_nPPh_2)}_m]$ (I-IV; n = 1-4) and the complexes trans-[RhCl(CO)(PEtPh_2)_2] and $[{Rh(cis-Ph_2PCH:CHPPh_2)_2}{RhCl_2(CO)_2}]$ have been studied, and the unique structure of $[RhCl(CO)(Ph_2P[CH_2]_2PPh_2)]$ within the series has been demonstrated (see Table).[†]

The chlorine-bridged dirhodium complex $[Rh_2Cl_2(CO)_4]$ was cleaved by tertiary phosphines (or arsines) to give the complexes^{1,2} trans- $[RhCl(CO)(PR_3)_2]$. In benzene solution equivalent amounts of $Ph_2P[CH_2]_nPPh_2$ and $[Rh_2Cl_2-(CO)_4]^3$ or $[Rh_2Cl_2(1,5-C_8H_{12})_2]^4$ gave the complexes $[{Rh Cl(CO)(Ph_2P[CH_2]_nPPh_2)}_m]$. Complex (II) has been shown The monomeric character of (II) was clearly reflected in both the i.r. and ³¹P n.m.r. spectra. The metal-carbonyl stretching band of (II) was $40-60 \text{ cm}^{-1}$ higher than that

shown by (I)—(IV) or trans-[RhCl(CO)(PEtPh₂)₂] (V).⁷ The ³¹P n.m.r. spectrum consisted of two doublets of doublets separated by 20 p.p.m., reflecting the difference between phosphorus atoms trans to Cl and to CO ($J_{P-P'}$ 34 Hz). The ³¹P n.m.r. spectra (¹H decoupled) of the dimeric complexes or of (V) showed in each case a unique environment for co-ordinated phosphorus (δ 85—96 p.p.m. to high field of P₄O₆). The signals were sharp doublets (¹ J_{Bh-P}

TABLE. ³¹P N.m.r. and i.r. spectroscopic data.

Complex				δ/p.p.m.ª	$^{1}J_{\mathrm{Rh-P}}/\mathrm{Hz^{a}}$	v(CO)/cm ⁻¹ b	$M^{ ext{c}}$
$[{RhCl(CO)(Ph_2PCH_2PPh_2)}_2]$	••	••	••	96.8	d	1968	(refs. 3 and 5)
$[RhCl(CO)(Ph_2P[CH_2]_2PPh_2)]^e$	••	••	••	$\left\{egin{array}{c} 42 \cdot 2^t \ 63 \cdot 4^g \end{array} ight.$	158 \ 124 (2010	542[565] (ref. 3)
$[\{ RhCl(CO) (Ph_2P[CH_2]_3PPh_2) \}_2]$		••		87.1	125	1954	949[1158]
$[\{ RhCl(CO)(Ph_2P[CH_2]_4PPh_2) \}_2]$		••	••	89 ·1	121	1951	1090[1186]
$trans-[RhCl(CO)(PEtPh_2)_2]^h$	••	••	••	85.9	122	1955	553[595]
{Rh(cis-Ph, PCH; CHPPh,), } {RhCl	$_{2}(CO)_{2}$	1	••	44 ·0	133	2054, 1970	1228[1126]

^a All ³¹P n.m.r. spectra (¹H decoupled) were run at -50 °C in CDCl₃ or CD₂Cl₂; signals were broader at room temperature. Chemical shifts are to high field of P₄O₆. ^b Pellets, 0.3% in KBr; all bands were very strong. ^c Osmometry; calculated values in brackets. ^d Second order: $|{}^{1}J_{Rh-P} + {}^{3}J_{Rh-P}| = 114$ Hz. ^e $J_{P-P'}$ 34 Hz. ^f P trans to CO. ^g P trans to Cl. ^h Results agree with reported values (see ref. 7).

to be a monomer in solution.³ Complex (I) was later shown to be a dimer in the solid state, with *trans* geometry.⁵ The ligand $\operatorname{But}_2P[\operatorname{CH}_2]_{10}\operatorname{PBut}_2$ forms a complex of similar structure.⁶

121—125 Hz) at -50 °C, but broader at room temperature. The similarity of both ³¹P n.m.r. and i.r. spectra of the complexes (III) and (IV) with those of (I) or (V), and the unique environment of phosphorus atoms demonstrate that

† All complexes gave satisfactory elemental analyses, and their molecular weights were determined osmometrically.

these are trans square-planar complexes of rhodium(I). It is unlikely that these ligands can bridge rhodium to coordinate in a trans manner. These data and molecular weight determinations therefore demonstrate that the structures of complexes (III) and (IV) are dimeric, analogous to (I).

None of the complexes resembled [{Rh(Ph2PCH:CH-

- ¹ J. T. Mague and J. P. Mitchener, *Inorg. Chem.*, 1969, **8**, 119. ² L. Vallarino, *J. Inorg. Nuclear Chem.*, 1958, **8**, 288. ³ W. Hieber and R. Kummer, *Chem. Ber.*, 1967, **100**, 148.

- ⁶ W. Hleber and K. Kummer, *Chem. Div.*, 1907 B. L. Shaw, *ibid.*, 1971, 1104.

 $\mathrm{PPh}_2)_2 \} \{ \mathrm{RhCl}_2(\mathrm{CO})_2 \}]^1$ in either the $^{31}\mathrm{P}$ n.m.r. or i.r. spectrum.

Expert experimental assistance of Mrs. C. Goulet is gratefully acknowledged.

(Received, 18th August 1975; Com. 950.)